Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection
نویسندگان
چکیده
In G2 phase cells, DNA double-strand break repair switches from DNA non-homologous end-joining to homologous recombination. This switch demands the promotion of resection. We examine the changes in 53BP1 and RAP80 ionizing radiation induced foci (IRIF) in G2 phase, as these are factors that restrict resection. We observed a 2-fold increase in the volume of 53BP1 foci by 8 h, which is not seen in G1 cells. Additionally, an IRIF core devoid of 53BP1 arises where RPA foci form, with BRCA1 IRIF forming between 53BP1 and replication protein A (RPA). Ubiquitin chains assessed using α-FK2 antibodies are similarly repositioned. Repositioning of all these components requires BRCA1's BRCT but not the ring finger domain. 53BP1, RAP80 and ubiquitin chains are enlarged following POH1 depletion by small interfering RNA, but a devoid core does not form and RPA foci formation is impaired. Co-depletion of POH1 and RAP80, BRCC36 or ABRAXAS allows establishment of the 53BP1 and ubiquitin chain-devoid core. Thus, the barriers posed by 53BP1 and RAP80 are relieved by BRCA1 and POH1, respectively. Analysis of combined depletions shows that these represent distinct but interfacing barriers to promote loss of ubiquitin chains in the IRIF core, which is required for subsequent resection. We propose a model whereby BRCA1 impacts on 53BP1 to allow access of POH1 to RAP80. POH1-dependent removal of RAP80 within the IRIF core enables degradation of ubiquitin chains, which promotes loss of 53BP1. Thus, POH1 represents a novel component regulating the switch from non-homologous end-joining to homologous recombination.
منابع مشابه
DNA DSB repair pathway choice: an orchestrated handover mechanism.
DNA double strand breaks (DSBs) are potential lethal lesions but can also lead to chromosome rearrangements, a step promoting carcinogenesis. DNA non-homologous end-joining (NHEJ) is the major DSB rejoining process and occurs in all cell cycle stages. Homologous recombination (HR) can additionally function to repair irradiation-induced two-ended DSBs in G2 phase. In mammalian cells, HR predomin...
متن کاملUSP3 controls BRCA1 “foci”
BRCA1, which is mutated in the familial forms of breast and ovarian cancer, plays important roles in genome stability through its participation in DNA damage response (DDR) following double-stranded breaks (DsBs). BRCA1 activates the checkpoint pathway to retard cell cycle progression and stimulates repair of the DsBs (reviewed in ref. 1). it is recruited to the damaged chromatin through an int...
متن کاملOpposing roles for 53BP1 during homologous recombination
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC...
متن کاملHuman RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks
Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid double-strand breaks (DSBs), mediated by the RNF8/RNF168 ubiquitin ligases, plays a key role in recruiting repair factors, including 53BP1 and BRCA1, to reestablish genome integrity. In this paper, we show that human RNF169, an uncharacterized E3 ubiquitin ligase paralogous to RNF168, accumulated in DSB repair foci thr...
متن کاملRIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection
The appropriate execution of DNA double-strand break (DSB) repair is critical for genome stability and tumor avoidance. 53BP1 and BRCA1 directly influence DSB repair pathway choice by regulating 5' end resection, but how this is achieved remains uncertain. Here we report that Rif1(-/-) mice are severely compromised for 53BP1-dependent class switch recombination (CSR) and fusion of dysfunctional...
متن کامل